Класс!ная физика   - занятные страницы Библиотека по физике Класс!ная физика - страницы истории Музей открытки 20 века Коты-рисунок, графика, живопись Малая Яблоновка на реке Оккервиль Обмен. Киндер-сюрпризы


Главная
Новое. Класс!ная физика
Вспомни физику:
7 класс
8 класс
9 класс
10-11 класс
видеоролики по физике
мультимедиа 7 кл.
мультимедиа 8 кл.
мультимедиа 9 кл.
мультимедиа 10-11 кл.
астрономия
тесты 7 кл.
тесты 8 кл.
тесты 9 кл.
демонстрац.таблицы
ЕГЭ
физсправочник

Книги по физике книги по физике - повышение IQ
Умные книжки
Умные книжки. Класс!ная физика
Есть вопросик?
Есть вопросик. Класс!ная физика
Его величество...
Его величество. Класс!ная физика
Музеи науки...
Музеи науки. Класс!ная физика
Достижения...
Достижения. Класс!ная физика
Викторина по физике
Викторина для физика
Физика в кадре
Физика в кадре

Учителю
В помощь учителю
Читатели пишут
Читатели пишут. Класс!ная физика

Загляни!
На урок

Выпускникам
Как сдавать экзамены?
ВУЗы Санкт-Петербурга
Тактика тестирования
Знаешь ли ты себя?
Пробное тестирование

Здесь есть всё!


СВЕРХДАЛЬНЯЯ СТРЕЛЬБА

ЗАНИМАТЕЛЬНАЯ ФИЗИКА, Я.И. ПЕРЕЛЬМАН


Обстреливать противника с расстояния в сотню и более километров впервые начала германская артиллерия к концу империалистической войны (1918 г.), когда успехи французской и английской авиации положили конец воздушным налетам немцев. Германский штаб избрал другой, артиллерийский, способ поражать столицу Франции, удаленную от фронта не менее чем на 110 км.





Рис. 29. Как изменяется дальность полета снаряда с изменением угла наклона сверхдальнобойного орудия; при угле 1 снаряд падает в Р', при угле 2 — в Р'', при угле же 3 дальность стрельбы сразу возрастает во много раз, так как снаряд залетает в слои разреженной атмосферы.



 Класс!ная физика   -  YouTube


Способ этот был совершенно новый, никем еще не испытанный. Наткнулись на него немецкие артиллеристы случайно. При стрельбе из крупнокалиберной пушки под большим углом возвышения неожиданно обнаружилось, что вместо дальности в 20 км достигается дальность в 40 км. Оказалось, что снаряд, посланный круто вверх с большой начальной скоростью, достигает тех высоких разреженных слоев атмосферы, где сопротивление воздуха весьма незначительно; в такой слабо сопротивляющейся среде снаряд пролетает значительную часть своего пути и затем круто опускается на землю. Рис. 29 наглядно показывает, как велико различие в путях снарядов при изменении угла возвышения.





Рис. 30. Немецкая пушка “•Колоссаль”. Внешний вид.

Это наблюдение и положено было немцами в основу проекта сверхдальнобойной пушки для обстрела Парижа с расстояния 115 км. Пушка была. успешно изготовлена и в течение лета 1918 г. выпустила по Парижу свыше трехсот снарядов.
Вот что стало известно об этой пушке впоследствии. Это была огромная стальная труба в 34 м длиной и в целый метр толщиной; толщина стенок в казенной части 40 см. Весило орудие 750 тонн. Его 120-килограммовые снаряды имели метр в длину и 21 см в толщину. Для заряда употреблялось 150 кг пороха; развивалось давление в 5000 атмосфер, которое и выбрасывало снаряд с начальной скоростью 2000 м/сек. Стрельба велась под углом возвышения 52°; снаряд описывал огромную дугу, высшая точка которой лежала на уровне 40 км над землей, т. е. далеко в стратосфере. Свой путь от позиции до Парижа — 115 км — снаряд проделывал в 3,5 минуты, из которых 2 минуты он летел в стратосфере.
Такова была первая сверхдальнобойная пушка, прародительница современной сверхдальнобойной артиллерии.
Чем больше начальная скорость пули (или снаряда), тем сопротивление воздуха значительнее: оно возрастает не пропорционально скорости, а быстрее, пропорционально второй и более высокой степени скорости, в зависимости от величины этой скорости.

ПОЧЕМУ ВЗЛЕТАЕТ БУМАЖНЫЙ ЗМЕЙ?

Пытались ли вы объяснить себе, почему бумажный змей взлетает вверх, когда его тянут за бечевку вперед?
Если вы сможете ответить на этот вопрос, вы поймете также, почему летит аэроплан, почему носятся по воздуху семена клена и даже отчасти уясните себе причины странных движений бумеранга. Все это — явления одного порядка. Тот самый воздух, который составляет столь серьезное препятствие для полета пуль и снарядов, обусловливает полет не только легкого плода клена или бумажного змея, но и тяжелого самолета с десятками пассажиров.




Рис. 31. Какие силы действуют на бумажный змей?

Чтобы объяснить поднятие бумажного змея, придется прибегнуть к упрощенному чертежу. Пусть линия MN (рис. 31) изображает у нас разрез змея. Когда, запуская змей, мы тянем его за шнур, он движется из-за тяжести хвоста в наклонном положении. Пусть это движение совершается справа налево. Обозначим угол наклона плоскости змея к горизонту через а. Рассмотрим, какие силы действуют на змей при этом движении. Воздух, конечно, должен мешать его движению, оказывать на змей некоторое давление. Это давление изображено на рис. 31 в виде стрелки ОС; так как воздух давит всегда перпендикулярно к плоскости, то линия ОС начерчена под прямым углом к MN. Силу ОС можно разложить на две, построив так называемый параллелограмм сил; получим вместо силы ОС две силы, OD и ОР. Из них сила OD толкает наш змей назад и, следовательно, уменьшает первоначальную его скорость. Другая же сила, ОР, увлекает аппарат вверх; она уменьшает его вес и, если достаточно велика, может преодолеть вес змея и поднять его. Вот почему змей поднимается вверх, когда мы тянем его за веревочку вперед.
Самолет — тот же змей, только движущая сила нашей руки заменена в нем движущей силой пропеллера или реактивного двигателя, которая сообщает аппарату движение вперед и, следовательно, подобно змею, заставляет его подниматься вверх. Здесь дана лишь грубая схема явления; есть другие обстоятельства, обусловливающие подъем самолета; о них будет речь в другом месте [См. вторую книгу “Занимательной физики”, статью “Волны и вихри”].




Рис. 32. Белки-летяги во время полета. Летяги делают с высоты прыжки на расстояние в 20 — 30 м.


Страницы из книги «Занимательная физика», авт. Я.И. Перельман


Глава 3.
Сопротивление среды

Пуля и воздух
Сверхдальняя стрельба
Бумажный змей
Живые планеры
Летание у растений
Затяжной прыжок
Бумеранг


Читаем дальше:


Глава 1. Книга 1. Скорость, сложение движений
Глава 2. Книга 1. Тяжесть, вес, рычаг, давление
Глава 3. Книга 1. Сопротивление среды
Глава 4. Книга 1. Вращение и вечные двигатели
Глава 5. Книга 1. Свойства газов и жидкостей
Глава 6. Книга 1. Тепловые явления
Глава 7. Книга 1. Лучи света
Глава 8. Книга 1. Отражение и преломление света
Глава 9. Книга 1. Зрение одним и двумя глазами
Глава 10. Книга 1. Звук и слух
Глава 7. Книга 2. Тепловые явления




RSS-лента Класс!ная физика


Азбука физики
Азбука физики. Класс!ная физика
Научные игрушки
Научные игрушки. Класс!ная физика
Простые опыты
Простые опыты. Класс!ная физика
Этюды об ученых
Этюды об ученых. Класс!ная физика
Решение задач
Решение задач
Презентации
Учебные презентации



© Балдина Е.А., 2004-2014 "Класс!ная физика"
Яндекс.Метрика
Hosted by uCoz